and Other Contributors




Abstract:A global shortage of radiologists has been exacerbated by the significant volume of chest X-ray workloads, particularly in primary care. Although multimodal large language models show promise, existing evaluations predominantly rely on automated metrics or retrospective analyses, lacking rigorous prospective clinical validation. Janus-Pro-CXR (1B), a chest X-ray interpretation system based on DeepSeek Janus-Pro model, was developed and rigorously validated through a multicenter prospective trial (NCT07117266). Our system outperforms state-of-the-art X-ray report generation models in automated report generation, surpassing even larger-scale models including ChatGPT 4o (200B parameters), while demonstrating reliable detection of six clinically critical radiographic findings. Retrospective evaluation confirms significantly higher report accuracy than Janus-Pro and ChatGPT 4o. In prospective clinical deployment, AI assistance significantly improved report quality scores, reduced interpretation time by 18.3% (P < 0.001), and was preferred by a majority of experts in 54.3% of cases. Through lightweight architecture and domain-specific optimization, Janus-Pro-CXR improves diagnostic reliability and workflow efficiency, particularly in resource-constrained settings. The model architecture and implementation framework will be open-sourced to facilitate the clinical translation of AI-assisted radiology solutions.
Abstract:By integrating language understanding with perceptual modalities such as images, multimodal large language models (MLLMs) constitute a critical substrate for modern AI systems, particularly intelligent agents operating in open and interactive environments. However, their increasing accessibility also raises heightened risks of misuse, such as generating harmful or unsafe content. To mitigate these risks, alignment techniques are commonly applied to align model behavior with human values. Despite these efforts, recent studies have shown that jailbreak attacks can circumvent alignment and elicit unsafe outputs. Currently, most existing jailbreak methods are tailored for open-source models and exhibit limited effectiveness against commercial MLLM-integrated systems, which often employ additional filters. These filters can detect and prevent malicious input and output content, significantly reducing jailbreak threats. In this paper, we reveal that the success of these safety filters heavily relies on a critical assumption that malicious content must be explicitly visible in either the input or the output. This assumption, while often valid for traditional LLM-integrated systems, breaks down in MLLM-integrated systems, where attackers can leverage multiple modalities to conceal adversarial intent, leading to a false sense of security in existing MLLM-integrated systems. To challenge this assumption, we propose Odysseus, a novel jailbreak paradigm that introduces dual steganography to covertly embed malicious queries and responses into benign-looking images. Extensive experiments on benchmark datasets demonstrate that our Odysseus successfully jailbreaks several pioneering and realistic MLLM-integrated systems, achieving up to 99% attack success rate. It exposes a fundamental blind spot in existing defenses, and calls for rethinking cross-modal security in MLLM-integrated systems.




Abstract:Behavioral cloning is a widely adopted approach for offline policy learning from expert demonstrations. However, the large scale of offline behavioral datasets often results in computationally intensive training when used in downstream tasks. In this paper, we uncover the striking data saturation in offline behavioral data: policy performance rapidly saturates when trained on a small fraction of the dataset. We attribute this effect to the weak alignment between policy performance and test loss, revealing substantial room for improvement through data selection. To this end, we propose a simple yet effective method, Stepwise Dual Ranking (SDR), which extracts a compact yet informative subset from large-scale offline behavioral datasets. SDR is build on two key principles: (1) stepwise clip, which prioritizes early-stage data; and (2) dual ranking, which selects samples with both high action-value rank and low state-density rank. Extensive experiments and ablation studies on D4RL benchmarks demonstrate that SDR significantly enhances data selection for offline behavioral data.
Abstract:Autonomous driving has long relied on modular "Perception-Decision-Action" pipelines, where hand-crafted interfaces and rule-based components often break down in complex or long-tailed scenarios. Their cascaded design further propagates perception errors, degrading downstream planning and control. Vision-Action (VA) models address some limitations by learning direct mappings from visual inputs to actions, but they remain opaque, sensitive to distribution shifts, and lack structured reasoning or instruction-following capabilities. Recent progress in Large Language Models (LLMs) and multimodal learning has motivated the emergence of Vision-Language-Action (VLA) frameworks, which integrate perception with language-grounded decision making. By unifying visual understanding, linguistic reasoning, and actionable outputs, VLAs offer a pathway toward more interpretable, generalizable, and human-aligned driving policies. This work provides a structured characterization of the emerging VLA landscape for autonomous driving. We trace the evolution from early VA approaches to modern VLA frameworks and organize existing methods into two principal paradigms: End-to-End VLA, which integrates perception, reasoning, and planning within a single model, and Dual-System VLA, which separates slow deliberation (via VLMs) from fast, safety-critical execution (via planners). Within these paradigms, we further distinguish subclasses such as textual vs. numerical action generators and explicit vs. implicit guidance mechanisms. We also summarize representative datasets and benchmarks for evaluating VLA-based driving systems and highlight key challenges and open directions, including robustness, interpretability, and instruction fidelity. Overall, this work aims to establish a coherent foundation for advancing human-compatible autonomous driving systems.
Abstract:All-in-One Image Restoration (AiOIR) aims to recover high-quality images from diverse degradations within a unified framework. However, existing methods often fail to explicitly model degradation types and struggle to adapt their restoration behavior to complex or mixed degradations. To address these issues, we propose ClusIR, a Cluster-Guided Image Restoration framework that explicitly models degradation semantics through learnable clustering and propagates cluster-aware cues across spatial and frequency domains for adaptive restoration. Specifically, ClusIR comprises two key components: a Probabilistic Cluster-Guided Routing Mechanism (PCGRM) and a Degradation-Aware Frequency Modulation Module (DAFMM). The proposed PCGRM disentangles degradation recognition from expert activation, enabling discriminative degradation perception and stable expert routing. Meanwhile, DAFMM leverages the cluster-guided priors to perform adaptive frequency decomposition and targeted modulation, collaboratively refining structural and textural representations for higher restoration fidelity. The cluster-guided synergy seamlessly bridges semantic cues with frequency-domain modulation, empowering ClusIR to attain remarkable restoration results across a wide range of degradations. Extensive experiments on diverse benchmarks validate that ClusIR reaches competitive performance under several scenarios.
Abstract:Equivariant neural networks encode symmetry as an inductive bias and have achieved strong empirical performance in wide domains. However, their expressive power remains not well understood. Focusing on 2-layer ReLU networks, this paper investigates the impact of equivariance constraints on the expressivity of equivariant and layer-wise equivariant networks. By examining the boundary hyperplanes and the channel vectors of ReLU networks, we construct an example showing that equivariance constraints could strictly limit expressive power. However, we demonstrate that this drawback can be compensated via enlarging the model size. Furthermore, we show that despite a larger model size, the resulting architecture could still correspond to a hypothesis space with lower complexity, implying superior generalizability for equivariant networks.
Abstract:Recent advances in text-to-image (T2I) diffusion models have significantly improved semantic image editing, yet most methods fall short in performing 3D-aware object manipulation. In this work, we present FFSE, a 3D-aware autoregressive framework designed to enable intuitive, physically-consistent object editing directly on real-world images. Unlike previous approaches that either operate in image space or require slow and error-prone 3D reconstruction, FFSE models editing as a sequence of learned 3D transformations, allowing users to perform arbitrary manipulations, such as translation, scaling, and rotation, while preserving realistic background effects (e.g., shadows, reflections) and maintaining global scene consistency across multiple editing rounds. To support learning of multi-round 3D-aware object manipulation, we introduce 3DObjectEditor, a hybrid dataset constructed from simulated editing sequences across diverse objects and scenes, enabling effective training under multi-round and dynamic conditions. Extensive experiments show that the proposed FFSE significantly outperforms existing methods in both single-round and multi-round 3D-aware editing scenarios.




Abstract:Aligning Large Language Models (LLMs) to be faithful to new knowledge in complex, multi-hop reasoning tasks is a critical, yet unsolved, challenge. We find that SFT-based methods, e.g., Reason-KE, while state-of-the-art, suffer from a "faithfulness gap": they optimize for format mimicry rather than sound reasoning. This gap enables the LLM's powerful parametric priors to override new contextual facts, resulting in critical factual hallucinations (e.g., incorrectly reasoning "Houston" from "NASA" despite an explicit edit). To solve this core LLM alignment problem, we propose Reason-KE++, an SFT+RL framework that instills process-level faithfulness. Its core is a Stage-aware Reward mechanism that provides dense supervision for intermediate reasoning steps (e.g., Decomposition, Sub-answer Correctness). Crucially, we identify that naive outcome-only RL is a deceptive trap for LLM alignment: it collapses reasoning integrity (e.g., 19.00% Hop acc) while superficially boosting final accuracy. Our process-aware framework sets a new SOTA of 95.48% on MQUAKE-CF-3k (+5.28%), demonstrating that for complex tasks, aligning the reasoning process is essential for building trustworthy LLMs.
Abstract:Brain-inspired Spiking neural networks (SNNs) promise energy-efficient intelligence via event-driven, sparse computation, but deeper architectures inflate parameters and computational cost, hindering their edge deployment. Recent progress in SNN pruning helps alleviate this burden, yet existing efforts fall into only two families: \emph{unstructured} pruning, which attains high sparsity but is difficult to accelerate on general hardware, and \emph{structured} pruning, which eases deployment but lack flexibility and often degrades accuracy at matched sparsity. In this work, we introduce \textbf{SpikeNM}, the first SNN-oriented \emph{semi-structured} \(N{:}M\) pruning framework that learns sparse SNNs \emph{from scratch}, enforcing \emph{at most \(N\)} non-zeros per \(M\)-weight block. To avoid the combinatorial space complexity \(\sum_{k=1}^{N}\binom{M}{k}\) growing exponentially with \(M\), SpikeNM adopts an \(M\)-way basis-logit parameterization with a differentiable top-\(k\) sampler, \emph{linearizing} per-block complexity to \(\mathcal O(M)\) and enabling more aggressive sparsification. Further inspired by neuroscience, we propose \emph{eligibility-inspired distillation} (EID), which converts temporally accumulated credits into block-wise soft targets to align mask probabilities with spiking dynamics, reducing sampling variance and stabilizing search under high sparsity. Experiments show that at \(2{:}4\) sparsity, SpikeNM maintains and even with gains across main-stream datasets, while yielding hardware-amenable patterns that complement intrinsic spike sparsity.




Abstract:Knowledge-based Visual Question Answering (KBVQA) necessitates external knowledge incorporation beyond cross-modal understanding. Existing KBVQA methods either utilize implicit knowledge in multimodal large language models (MLLMs) via in-context learning or explicit knowledge via retrieval augmented generation. However, their reasoning processes remain implicit, without explicit multi-step trajectories from MLLMs. To address this gap, we provide a Hindsight Distilled Reasoning (HinD) framework with Knowledge Encouragement Preference Optimization (KEPO), designed to elicit and harness internal knowledge reasoning ability in MLLMs. First, to tackle the reasoning supervision problem, we propose to emphasize the hindsight wisdom of MLLM by prompting a frozen 7B-size MLLM to complete the reasoning process between the question and its ground truth answer, constructing Hindsight-Zero training data. Then we self-distill Hindsight-Zero into Chain-of-Thought (CoT) Generator and Knowledge Generator, enabling the generation of sequential steps and discrete facts. Secondly, to tackle the misalignment between knowledge correctness and confidence, we optimize the Knowledge Generator with KEPO, preferring under-confident but helpful knowledge over the over-confident but unhelpful one. The generated CoT and sampled knowledge are then exploited for answer prediction. Experiments on OK-VQA and A-OKVQA validate the effectiveness of HinD, showing that HinD with elicited reasoning from 7B-size MLLM achieves superior performance without commercial model APIs or outside knowledge.